
Dynamic Deep Octree for High-resolution 
Volumetric Painting in Virtual Reality

Authors - Yeojin Kim, Byungmoon Kim, Young J. Kim

Presented By - Anshul Mendiratta



Introduction



AIM
● To digitally paint on a 3D voxel canvas in virtual reality similar to how one would paint 

on a 2D pixel canvas.

● Use a dynamic octree based painting and rendering system using both CPU and GPU 

resulting in low latency without compromising frame rates

● Canvas size of 40 km

3

 with details down to 0.3mm

3



Challenges
• Dynamic tree update - Artists will continuously modify the underlying tree; we therefore need to 

update the tree dynamically.

• Constant frame rates - Artists spend several hours painting in VR, and consideration must therefore 

be given to mitigating the possibility of VR-sickness. One source of such sickness is hitching or 

stuttering in the rendering frame rates, which should not be compromised; the frame rates should stay 

constant.

• Low-latency stroke display - When an artist applies a stroke, the tree should be modified 

immediately and rendered back to the artist. Therefore, we require low latency for stroke display.

• Low memory consumption - When a very large canvas is used, artists tend to paint a very large world 

and add details in multiple locations. Thus, a low memory requirement is beneficial for maintaining a 

large canvas.



Octree: A recap
An octree is a tree data structure in which each 

internal node has exactly eight children. 

Octrees are most often used to partition a 

three-dimensional space by recursively 

subdividing it into eight octants.

The Octree can be formed from 3D volume by 

doing the following steps:

1. Divide the current 3D volume into eight 

boxes

2. If any box has more than one point then 

divide it further into boxes

3. Do not divide the box which has one or 

zero points in it

4. Do this process repeatedly until all the 

boxes contain one or zero point in it

Time complexity:

1. Find: O(log2N)

2. Insert: O(log2N)

3. Search: O(log2N)

4. Space complexity: O(k log2N)

Where k is count of points in the space and space is of 

dimension N x M x O, N >= M, O.



Overview



Overview of the System



Overview of the System
Interactive volumetric field painting is composed of several parallel tasks: processing strokes, 

adjusting the octree, uploading the octree to the GPU, and rendering the octree. These are 

implemented in multiple threads as illustrated in the previous figure. 

1. In the painting thread, the segments, color, and the stamp of strokes are queued.

2. In the stroke thread, we conduct a stroke-cell intersection test, and refine or coarsen the 

intersecting cells. The octree memory is divided into a uniformly-sized blocks. 

3. In the staging thread, a sequence of cells is copied including newly refined or coarsened 

cells into a separate memory, which is called the staged block. These staged blocks are 

pushed to the staged blocks queue. 

4. In the upload thread, this staged queue is consumed by uploading staged blocks to the 

GPU.

5. Finally, the rendering thread renders the octree using ray casting.



Memory Layout



Root array and octree depth
● In order to author highly-detailed and dynamic volumetric fields, an array of 

octrees is used.

● The roots of the octree are stored as a 3D array, called the root array. Each root 

can be refined up to 24 times, which is the maximum depth. 

● While the root array helps to reduce the tree depth and offers several advantages 

such as trivial parallelization, in a very large canvas with highly adaptive tree, the 

advantage appears to diminish. 

● Therefore, a relatively coarse, 4

3

 array of octree roots, each of which can be refined 

to a maximum depth. Effectively, this is equivalent to a single 26-deep octree root. 

This resolution can span a volumetric space of from 0.3mm

3

 to 40Km

3

 with 

respect to the room-scale VR setup.



Octree on CPU vs Octree on GPU
 In general, the CPU-side octree is constructed of linear pools (parent/child indices and fields) 

that are packed into textures in the GPU. The CPU has temporary pools (for painting) that do 

not exist in the GPU. For an efficient ray traversal, the GPU has a neighborhood connectivity 

pool, G3 texture, that CPU does not have.

Therefore, there is A CPU-side octree for dynamic adjustment and color blending, pick up, 

erase, and recolor operations and a GPU-side octree for rendering. 



Dynamic Deep Octree Representation in a CPU
1. The octree is 2:1 balanced, where the difference in depth between neighbouring 

cells is equal to or less than 1

2. Eight children are created when a cell is refined. 

3. Pointers not used, instead the index used that uniquely identifies each cell. 

4. The octree is made up of multiple linear memory pools indexed by I. Painting 

properties such as color, density, and temporary variables are stored as separate 

field pools. More field pools can be added, even dynamically if needed, such as 

alpha values.

5. For dynamic refinement and coarsening, linked-list based memory management is 

used.

6. The size of an allocation unit is fixed as we allocate or free eight cells. 

7. The pool begins with a uniform root array, i.e., 4

3

 array, that cannot be freed. We 

have another separate flag pool for the depth of cells and other bit-field flags for 

tree adjustment.



Tree Graph and Neighborhood access
1. Consider tree graph G

p,

 such that the octree is defined only by parents and 

children pools that store two indices of the parent and the first child, since indices 

of the remaining seven children are consecutively numbered and hence do not 

need to be stored. 

2. Note that ray casting using only Gp may have poor performance as the depth of 

the tree increases; e.g. if the maximum depth is 24, the traversal path from Gp to a 

neighbor can be as long as 48 in the worst case (Cells belonging to different root 

nodes). Therefore, an immediate neighbor topology is useful to accelerate the ray 

traversal.

3. Since we have a 2:1 balanced octree, each cell can have 6 - 24 neighbours



Tree Graph and Neighborhood access
1. First we link same or smaller depth cells. Hence 

we have 6 neighbours per cell.

2. Now, since eight children have consecutive 

indices, we can access at least 3 of the 6 

neighbours directly from their index. For 

example D

1

, D

2

 and the cell above or below D.

3. The other 3 cells may result in long tree 

traversals, hence they are precomputed . The 

collection of 3 neighbours for each cell is termed 

as G

3

4. To access any of the subcells in a case like D

1

, we 

can again make the use of indices and the fact 

that we have access to the first child of every cell



Dynamic Deep Octree Representation in a GPU
● Mapping the octree pools in a CPU to textures in a GPU is straightforward. 

● Since textures have a resolution-limit in each dimension, we cannot use a 1D 

texture. 

● We must use 2D or 3D textures and map a linear index I to two or three indices. 

Since modern GPUs support up to 16 thousand texels per dimension, 2D textures 

can support up to 256M cells.

● We pack Gp (parent, child) and the depth into a texture. RGBA color is stored as 

another texture. G3 (3-neighbor) is another integer texture with three channels. 



Updating the Octree



Dynamic Octree Update with low latency
1. The importance of avoiding nausea, sickness, and postural instability is escalated 

in VR painting lasting several hours.

2. Among factors on those symptoms, little delay in sync between the rendered 

scene and the head motion is an minimum requirement that cannot be 

compromised. 

3. However, simply copying an octree to a texture will take 222ms even with full 

bandwidths of a CPU, a PCIe, and a GPU. 

4. Therefore, instead of updating the entire tree, we incrementally and dynamically 

update the underlying octree.



Incremental Tree Adjustment
1. Although we can effectively reject cells that do not intersect with brush stamps, 

painting an octree can still be expensive. 

2. A broad brush stroke can be applied near a highly-refine region or a fine brush 

stroke can be applied near a coarsened region. 

3. To address a sharp change in the depth of cells, we develop a multi-step strategy.

4. In a CPU-thread separate from rendering, we first paint on the CPU tree without 

tree adjustment and update on the GPU. 

5. The next step is a tree-adjustment stage where we mark cells that should be 

refined or coarsened and perform one-level refinement or coarsening per frame. 

After one-level tree adjustment, we reflect these changes to the GPU. 

6. We repeat this process until no cell needs to be refined or coarsened. 



Block-based Update using Staging



Block-based Update using Staging
1. The stroke diameter is set to be approximately 10 cells, for a stroke length of one, about 

up to 1,000 cells per stroke would require updates. 

2. Since uploading a 1,000 times to the GPU would also be prohibitively slow, we use large 

blocks to reduce the upload counts. 

3. We use a block, which refers to linear pitched packing that divides texture horizontally.

4. If we directly upload updated blocks to the GPU, the whole CPU-based tree would be 

locked and the painting thread would stall. 

5. To avoid this painting interruption, we first copy the block to a staging buffer, designed 

for CPU-side hazard control, that serves as an update queue. A block copied to a staging 

buffer is called a staged block. 

6. We collect the staged blocks in a separate thread using only small atomic sections during 

tree adjustments and queue them in the LIFO queues with upload-to-GPU tasks. 

7. We then simply stage and upload one block per rendering frame



Neighborhood Computation Mask
1. Even though a neighbor computation on the GPU corresponds to a simple 

computation of the graph G3, the resolution of the texture can be large 

(16384×8192) which affects the interactivity.

2. Therefore, we develop a simple and efficient method to dramatically reduce this 

rendering cost.

3. Once a cell is created or deleted, not only the cell but also its neighbors should be 

updated in G3. Since neighbors may not be inside a block that contains the cell, 

updating G3 within the block would not be sufficient. 

4. Hence, we compute a very small mask in the CPU that contains dirty bits 

indicating which cells need to recompute their neighbors due to the tree topology 

change. While staging the cells on the CPU, we upload this small mask to the 

GPU, and perform a neighbor computation only on the cells in the marked area. 



Rendering the Volume



Accurate Volume Rendering with High-depth Octree
1. Rendering 3D volumetric fields poses another challenge. 

2. One viable solution involves extracting voxel faces and rendering them through 

raster graphics pipeline using, for example, OpenGL

3. However, as the number of grids in the non-uniform size increases, the extracted 

vertex positions, particularly far from the origin, may not be accurate due to 

numerical error.

4. More significantly, geometric extraction requires a substantial amount of 

computational time, as the number of voxels grows.

5. Consequently, we explore an alternative approach of ray casting through octree 

volumetric field



Accurate ray starting point
1. When editing fine detail, users should be able to zoom in to observe the cells that 

have the highest depth. 

2. However, the size of these tree cells can be even smaller than the single-precision 

floating point. 

3. In a VR environment, naively using the floating point for the eye position in a 

world coordinate will force the head positions to jump towards nearby floating 

point values, and more significantly, the eye distance will be erratic. 

4. We propose computing the ray starting point in a cell local coordinate frame. Our 

cell-local coordinate system is a barycentric coordinate system that has the origin 

at the cell center with a size of one. The range of coordinates inside the cell is 

[-0.5, 0.5]. Consequently, the finest resolution inside a cell is 0.5 ×2

−23

 in 

single-precision floating point regardless of the size of the cell. 



Accurate ray traversal
1. Given a ray and its direction d, and a cell-entry point pi of the ray into the ith cell, 

we compute the cell traversal distance ti and the cell-exit point pi′ as well as a 

neighboring cell containing pi′. 
2. Since our volumetric canvas covers a large space and the cell sizes vary by a large 

magnitude, using a global coordinate system to calculate pi′ and the ray traversal 

length t can be inaccurate. 

3. In contrast, the cell-local coordinate system can produce accurate results 

regardless of the zoom level. We represent pi and p′i with respect to the frame 

whose origin is located at the cell center and the size is normalized to one. 

4. Using the intersecting face which contains pi′ and the neighbor texture described, 

we choose the neighbor cell (the i + 1th cell) to visit, and set pi′ to pi+1′. This 

process is repeated until the ray terminates after accumulating full opacity or exits 

the canvas.



Results


